project description

New, eco-efficient aircrafts are challenged by a demand to significantly reduce the CO2 and NOx emission. To achieve these goals, the topic manager is exploring new configurations for integrating advanced engines and propulsion concepts to the aircraft. Most of such promising concepts as the CROR-engine, Boundary Ingestion Layer (BIL), Ultra High Bypass Ratio engines (UHBR), multiple fan cannot be targeted simply by replacing engines of the current generation, but require a substantial change of the principle aircraft configuration. In case of un-ducted engine architecture as the CROR, the rearward shift of the engines away from the wing provides additional advantages in cabin noise and passenger comfort and safety improvement. Regarding the safety, main issue is the CROR engine debris that can be release with high energy when there is a failure. It is mandatory to develop innovative solutions for panels and shielding able to shield and reduce damage at impact, to secure the airframe integrity, so that aircraft can make safe continuation of flight and landing after engine burst event. 

The goal of the REDISH project is the development and maturation of innovative shielding able to sustain impacts from high and low energy debris caused by Counter-Rotative Open Rotor (CROR) engine burst. A coupled experimental-numerical development approach at two structural scales (laminate/panel and component) is proposed that starts from a large pool of possible configurations that will be down selected in successive analysis steps of increasing detail. Virtual testing by means of high-fidelity simulation tools developed by the consortium will be used to decrease the need for costly physical testing as much as possible and accelerate the shielding development process. The specimens to be manufactured and tested are the ones strictly necessary to validate the numerical simulations and assure the highest educated selection of the actual solution to be implemented for CROR Engine Debris Impact Shielding.

REDISH proposes a systematic down-selection strategy to develop innovative shielding solutions against CROR engine debris based on a high-fidelity numerical approach validated by experimental testing. The workflow of this innovative methodology is represented in the image below.

The REDISH project has received funding from the European Union’s Horizon 2020 Framework Programme for the Clean Sky Joint Technology Initiative 2 under grant agreement nº 686946